Variation of hamstrings lengths and velocities with walking speed.

نویسندگان

  • Kiran J Agarwal-Harding
  • Michael H Schwartz
  • Scott L Delp
چکیده

Crouch gait, one of the most prevalent movement abnormalities among children with cerebral palsy, is frequently treated with surgical lengthening of the hamstrings. To assist in surgical planning many clinical centers use musculoskeletal modeling to help determine if a patient's hamstrings are shorter or lengthen more slowly than during unimpaired gait. However, some subjects with crouch gait walk slowly, and gait speed may affect peak hamstring lengths and lengthening velocities. The purpose of this study was to evaluate the effects of walking speed on hamstrings lengths and velocities in a group of unimpaired subjects over a large range of speeds and to determine if evaluating subjects with crouch gait using speed matched controls alters subjects' characterization as having "short" or "slow" hamstrings. We examined 39 unimpaired subjects who walked at five different speeds. These subjects served as speed-matched controls for comparison to 74 subjects with cerebral palsy who walked in crouch gait. Our analysis revealed that peak hamstrings length and peak lengthening velocity in unimpaired subjects increased significantly with increasing walking speed. Fewer subjects with cerebral palsy were categorized as having hamstrings that were "short" (31/74) or "slow" (38/74) using a speed-matched control protocol compared to a non-speed-matched protocol (35/74 "short", 47/74 "slow"). Evaluation of patients with cerebral palsy using speed-matched controls alters and may improve selection of patients for hamstrings lengthening procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle length and lengthening velocity in voluntary crouch gait.

The purpose of this study was to explore how origin-insertion length and lengthening velocity of hamstring and psoas muscle change as a result of crouch gait. The second purpose was to study the effect of changes in walking speed, in crouch, on muscle lengths and velocities. Eight healthy female subjects walked on a treadmill both normally and in crouch. In the crouch condition, subjects walked...

متن کامل

Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening?

Children with crouch gait frequently walk with improved knee extension during the terminal swing and stance phases following hamstrings lengthening surgery; however, the mechanisms responsible for these improvements are unclear. This study tested the hypothesis that surgical lengthening enables the hamstrings of persons with cerebral palsy to operate at longer muscle-tendon lengths or lengthen ...

متن کامل

The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait.

Persons with cerebral palsy frequently walk with excessive knee flexion during terminal swing and stance. This gait abnormality is often attributed to "short" or "spastic" hamstrings that restrict knee extension, and is often treated by hamstrings lengthening surgery. At present, the outcomes of these procedures are inconsistent. This study examined whether analyses of the muscle-tendon lengths...

متن کامل

The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy.

Children with cerebral palsy often walk with reduced knee extension in terminal swing, which can be associated with short length or slow lengthening velocity of hamstrings muscles during gait. This study investigated the role of two factors that may contribute to such short and slow hamstrings: walking speed and spasticity. 17 children with spastic cerebral palsy and 11 matched typically develo...

متن کامل

How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds.

The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle-tendon dynamics to calculate the lengths and velocities of muscle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2010